
Effectively constructing, coding and decoding arbitrary
block error-correcting codes –that is, by means of efficient
computer programmes– turns out to be quite arduous.
Indeed, Goppa codes, for example, involve at least the fol-
lowing objects:

• Arbitrary finite fields F = Fq.
• Polynomials and matrices over F.
• Algebraic curves X F.
• The points on X that are rational over F.
• Rational functions on X, their natural operations and

their values at points of X.
• Divisors on X.

Furthermore, a system in which all these items, and the
corresponding operations, can be represented, should also
be able to express and run the diverse algorithms that typi-
cally appear in the area.

In this paper, we present the system OMEGA, with special
attention to the services it provides to represent the objects
and solve the problems mentioned above. In broad outline,
after a first section in which we deal with some generalities
about OMEGA, we devote the remaining sections to explain
the key ideas of the theory of error-correcting codes that we
need here, and, in each case, we will work out what is the
bearing of OMEGA on them. Many other related services are
introduced in the quite long chapter 1. In this way, many fea-
tures of the programme OMEGA, and of the language inter-
preted by it (here called W) will gradually emerge. To be
more specific, i section 2 we find some basic notions of
block codes; in section 3, alternant codes, a class compris-
ing BCH (with its important subclass RS) and the classical
Goppa codes; in section 4, the Berlekamp-Massey (BM) de-
coding algorithm for alternant codes and its detailed imple-
mentation in OMEGA; in section 5, examples of how this de-
coder works; in section 6, which can be regarded as a more
advanced continuation of section 1, we study some of the
external functions that have been used in the previous sec-

CONTRIBUTIONS to SCIENCE, 1 (2): 199-224 (1999)
Institut d’Estudis Catalans, Barcelona

OMEGA: a system for the effective construction, coding and
decoding of block error-correcting codes

S. Xambó*
Departament de Matemàtica Aplicada i Facultat de Matemàtiques i Estadística, Universitat Politècnica de Catalunya

Abstract

In this work, we show how to implement effective construc-
tions, coding and decoding of algebraic codes by means of
Omega, a system specifically designed and programmed
for general mathematical computations. For alternant codes,
the main class we consider (which includes BCH, RS and
classical Goppa codes), we give an implementation of the
Euclidean division BM decoding algorithm. For cyclic codes
we implement the Meggitt decoder, and to illustrate how it
works we provide an implementation of the Meggitt syn-
drome tables for the two Golay codes. Finally, we present
several other groups of functions and the computations and
problems (still almost in the area of error-correcting codes)
they solve.

Resum

L’objecte d’aquest treball és explicar com es poden imple-
mentar d’una manera efectiva, mitjançant el programa de
manipulació simbòlica OMEGA, algunes de les construccions
i operacions més importants de la teoria de codis correctors
algebraics. Per als codis alternants, la classe més important
que considerem, i que inclou els codis BCH, RS i de Goppa
clàssics, presentem una implementació de l’algorisme de
descodificació de Berlekamp-Massey. Per als codis cíclics,
implementem l’algorisme de descodificació de Meggitt, i
il·lustrem el seu funcionament, mitjançant la construcció de
les corresponents taules de síndromes de Meggitt, per als
codis de Golay. Finalment, presentem diversos altres grups
de funcions, així com els càlculs i problemes (encara cir-
cumscrits gairebé a l’àrea de codis correctors) que ens per-
meten resoldre.

* Author for correspondence: Sebastià Xambó, Departament de
Matemàtica Aplicada II (MA2) i Facultat de Matemàtiques i
Estadística (FME), Universitat Politècnica de Catalunya (UPC). Pau
Gargallo, 5. Campus Sud-Edif. U. 08028 Barcelona, Catalonia
(Spain). Tel. 34 93 401 69 26. Fax: 34 93 401 72 84. Email:
sxd@ma2.upc.es.

Currently the author is president of the Catalan Society for
Mathematics.

The OMEGA team 1998/1999, led by the author, consists of Daniel
Marquès, Ramon Eixarch, Marc Castells, David Arso and Pere
Garriga.

tions as well as other functions related to the computational
aspects of error-correcting codes; in section 7, finally, we
write down some conclusions and make a few additional re-
marks on the expressive power of W, including its multilin-
gual features.

For more specialized applications in the coding area, see
[26]; for other applications of OMEGA, see [27], the users
manual, and [25], an OMEGA package for computations in in-
tersection theory (two functions of this package are shown in
section 6).

1. A first glimpse on OMEGA

In this section we provide a quick tour to some of the main
features of the programme OMEGA (and of the language W).
The reader interested in effective methods in coding can
skim over this section, and may return to it later if needed.

OMEGA is written in C++. Here we run a version compiled
with Visual C++ for Windows 98 called OMEGA/Athens/1999.
This system should be useful for teaching several subjects
(e.g. linear algebra, geometry, algebra, calculus, number
theory, combinatorics, algebraic geometry) in the universi-
ties and for research on many fields of mathematics and
physics.

The programme OMEGA/Athens has a command line of the
form

User[n]: |

in which we can write W-expressions (n is a positive integer
and | stands for a blinking cursor). For example,

User[127]: p = {i with i in 1..10000 suchthat

prime?(i)}

assigns the list of prime numbers that are less than 10000 to
the variable p. This expression is equivalent to

User[127]: p = {i suchthat prime?(i) with i in

1..10000}

Anyhow, the answer is

OMEGA[127]:= {2,3,5,...,9973} :: List

User[128]: |

(the value of p is a list of 1229 integers and, in my laptop,
OMEGA takes 0.17 s to answer). Now, the system is waiting
for another expression. The dialog User-OMEGA will continue
until we issue the command to exit, clicking the Close button
in the File menu, or entering one of the following commands:

bye();

exit();

quit();

Types
The language W is typed. To indicate that a value x has type
T, we (and OMEGA) write x :: T. Thus, the type of p above is
List (by definition, a list is a finite sequence of objects en-

closed within braces). The length of a list L can be obtained
writing dim(L) or length(L). The expression required to
extract the i-th element of a list L is L.i (which results in an
error message if i is not in the range of L).

The most basic type is Integer (written Z in the output).
For example, p.100 denotes the 100-th term in the list p, and
we have:

User[128]: p.100;

OMEGA[128]:= 541 :: Z

Integers in W are roughly bounded to 4x1010 decimal digits.
Thus, two digits of 2x1010 decimal digits can be multiplied.
Or, theoretically, we could find n! for n = 5x108!, although
this would take too much time, even for a much lower n. For
example, about 2 s are needed to calculate 20000! (66024
decimal digits), but it takes about 50 s to transform that num-
ber from the internal representation to the decimal form and
print it on the screen.

Vectors and matrices
Vectors are similar to lists: a vector is a sequence of objects
enclosed within brackets, e.g. [2,3,5,7], and the length of a
vector v is given by dim(v) or length(v). The difference
between vectors and lists lies in the operations predefined
for each type. For example, vectors of the same dimension
can be added, and a vector can be multiplied by a scalar,
but these operations are undefined for lists.

One remarkable operation with the vectors u and v (which
also works for lists) is the concatenation u|v. Let us see two
examples:

u = [1,2,3]; v = [a,b,c]

w=u|v

---> [1,2,3,a,b,c] :: Vector(Z[a,b,c])

u|-u|w|-v

--->

[1,2,3,-1,-2,-3,1,2,3,a,b,c,-a,-b,-c] ::

Vector(Z[a,b,c])

A matrix is a sequence of vectors of the same length en-
closed within brackets. The product of matrices, or of a ma-
trix and a vector, is defined as usual. In addition, OMEGA has
very powerful functions to construct and manipulate vectors
and matrices. For example, if A and B are matrices with the
same number of columns, A & B is the matrix obtained by
stacking A on top of B. Likewise, if A and B have the same
number of rows, A | B is the matrix whose rows are the con-
catenation of the corresponding rows of A and B. Let us also
mention that the transpose of a matrix A is A¢ (or trans-
pose(A)). Some of these services will be used in the follow-
ing sections. For further details, see [27].

Ranges
If a, b, c are integers, the type of the object a..b..c is Range
(the object a..b coincides with a..b..1; note that in the con-
struction of the list p at the beginning of this section we have
used the range 1..10000). The range r = a..b..c is a latent

200 S. Xambó

way of referring to the integers a,a+c,a+2c,... that are not
greater than b. We say ’latent’ because these integers are
not computed when the system evaluates r, but only when
they are needed. If we write, for instance, [r], then we get the
vector [a,a+c,a+2c,...]. Here is an example:

r=34..180..17;

---> 34..180..17 :: Range

[r];

---> [34, 51, 68, 85, 102, 119, 136, 153, 170]

:: Vector(Z)

(hereafter, we will omit the prompt label User[...] and the
results label OMEGA[...], and we will only write the input ex-
pression and the resulting value with the symbol ---> in be-
tween).

Functions
Functions in OMEGA have type Function. OMEGA has many
built-in functions, or internal functions, like

binomial(n,m)

that yields the binomial number (nm),

prim(K)

that returns a primitive element of the (finite) field K (finite
fields are treated in section), or

polirred(K,r,T)

that supplies us, given a finite field K, a positive integer r and
an indeterminate T, with a monic irreducible polynomial of
degree r with coefficients in K in the indeterminate T (an in-
determinate is a name that has not been assigned a value).

The function binomial(n,m) has two arguments, which
are supposed to be non-negative integers. The function
prim(K) has a unique argument, which is a (finite) field. And
the function polirred(K,r,T) has three arguments, which
are, respectively, a finite field, a positive integer and an inde-
terminate.

Functions can also be defined by the user, or read from
suitable files, and in this case we say that they are external
functions. For example,

rv(n,m) := [random(m) with i in 1..n]

is an external function that constructs a vector of length n
whose components are integers in the range 0..(m-1), each
taken at random. Notice that here we use the internal function

random(m)

which returns, given a positive integer m, a pseudo-random
integer in the range 0..(m-1). (We will use the function rv in
the examples at the end of section 5.)

External functions like rv(n,m) can be defined at the
prompt line, but it is usually more convenient to define sever-
al of them in a file which can be read (or loaded) with the
function read (respectively load). We can call such a file an
W-library. By default, its extension is assumed to be .om

(.omd also works if no file .om can be found, but now this ex-
tension is considered obsolete). Thus,

read «tools»;

will read the expressions in the file tools.om (or tools.omd
if tools.om does not exist), and in particular the function de-
finitions therein. The expressions in a file are not displayed if
the function used is load, but they are displayed sequential-
ly if the function used is read. Files can be read using the
Open option in the pull-down menu File.

Here is an example of a very simple W-library, consist-
ing of only four functions (the symbol # opens a line com-
ment):

DEG-RAD.OMD

To transform radians into degrees

rad2deg(r) := r*180/Pi;

To transform degrees into radians

deg2rad(d) := d*Pi/180;

Radians r into [d,m,s] --d degrees,

m minutes, s seconds

rad2dms(r):=

begin local x,d,m,s;

x=rad2deg(r); d=floor(x);

floor(x)=the integral part of x

x=decimal(x)*60; m=floor(x);

decimal(x)=x-floor(x)

x=decimal(x)*60; s=floor(x);

[d,m,s]

end;

To find, if a=[d,m,s] is an angle in

degrees, minutes, seconds,

the corresponding number of radians.

dms2rad(a):=(a.1+a.2/60+a.3/3600)*Pi/180;

This file can be read with the command

read «deg-rad»

or with the command

load «deg-rad»

and we will then have the functions rad2deg, deg2rad,
rad2dms, dms2rad at our disposal, as if they were internal
functions. Note that deg2rad is an internal function that can
be invoked with the usual ° symbol:

sin(30 °)

-> 0.500

Functions, as any other object in OMEGA, need not be
bound to a name. Thus x->1/x stands for the function that
maps a value x into its inverse 1/x. If we want to give a
name to this function, say f, we can do it in two ways. We
can set

f(x):= 1/x

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 201

or just

f := x—>1/x

The value of both assignments is

x —> 1/x :: Function

and in both cases f(3) is 1/3.
Functions can be arguments of other functions. For exam-

ple, if v is a vector or a list, the function

inv(v) := map(x-->1/x,v)

yields the vector or list whose components are the inverses
of the components of v:

inv([1..5])

---> [1,1/2,1/3,1/4,1/5] :: Vector(Q)

Functions f(x) of a single parameter can be called with the
syntax

f x

(parenthesis are not needed). In the last example,

inv [1..5]

would mean the same. However, we usually write the paren-
thesis for clearness.

Polynomials
Univariate and polivaritate polynomials, with arbitrary coeffi-
cients, are supported by OMEGA. Let us see some examples.
If a = [a1,º,an] is a vector and T is an indeterminate, then

vector2pol(a,T)

returns the polynomial a1+a2T+º+anTn-1, whereas

roots2pol(a,T)

yields the polynomial Pn
i = 1(T–ai). This expression could also

be written in OMEGA as follows:

product (T-a.i) with i in range(a)

If f is a polynomial and x an indeterminate, the expression

diff(f,x)

gives the derivative of f with respect to x.

diff(5*x^14+13*x^7*y^31,y);

---> 403 x^7 y^30

Finite fields
The OMEGA system has powerful functions for the creation
and manipulation of finite fields (and rings) in a rather natural
way. From the very beginning of the project, OMEGA was in
fact designed to have an optimized internal module to sup-
port these services, since they were one of the prerequisite
basis for the coding theory computations that we had in
mind. We soon found out, however, that we could also
achieve a general system for mathematical computations,
and the present OMEGA is the result of having worked as far
as possible this possibility.

The fields Zp

The most basic constructor is the function Zn p, which cre-
ates, if p is a positive integer, the ring Zp of integers mod p
(and so the field Zp if p is prime). For example, 1234567891
is a prime number, and so

p=1234567891

K = Zn p

---> Z(1234567891) :: Field

creates the field, which we call K, of p elements.
The order of an element x ≠0 of a finite field (for example x

Œ K) is obtained with the function ord(x). As we know, it
must be a divisor of p-1. Actually, if d is a divisor of p-1 then
there are exactly f(d) elements of order d in K. In particular,
there are f(p-1) elements of order p-1, that is, generators of
the multiplicative group of non-zero elements (such ele-
ments are called primitive elements of the field).

We can find the list of divisors of p-1:

d=divisors(p-1)

--->

{1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90,

3607, 7214, 10821, 21642, 32463, 64926,

18035, 36070, 54105, 108210, 162315, 324630,

3803, 7606, 11409, 22818, 34227, 68454,

19015, 38030, 57045, 114090, 171135, 342270,

13717421, 27434842, 41152263, 82304526,

123456789, 246913578, 68587105, 137174210,

205761315, 411522630, 617283945, 1234567890}

:: List

and the corresponding values of the Euler’s f function:

phi={phieuler (d.i) with i in range(d)}

--->

{1, 1, 2, 2, 6, 6, 4, 4, 8, 8, 24, 24, 3606,

3606, 7212, 7212, 21636, 21636, 14424, 14424,

28848, 28848, 86544, 86544, 3802, 3802, 7604,

7604, 22812, 22812, 15208, 15208, 30416,

30416, 91248, 91248, 13710012, 13710012,

27420024, 27420024, 82260072, 82260072,

54840048, 54840048, 109680096, 109680096,

329040288, 329040288} :: List

Let us check that the sum of the f(d) is equal to p-1, as it
should be:

sigma phi.i with i in range(phi)

---> 1234567890 :: Z

Here is a simple experiment with orders: we take ten ran-
dom nonzero elements of K and for each one we also find its
order and the quotient of p-1 by it:

{{x=random(1,p-1):K, ord(x),(p-1)/ord(x)} with

i in 1..10}

--->

{{802534091, 246913578, 5}, {653136751,

1234567890, 1}, {56958461, 1234567890, 1},

{455711964, 617283945, 2}, {1100421531,

246913578, 5}, {1176514037, 617283945, 2},

202 S. Xambó

{961302966, 1234567890, 1}, {1038759249,

41152263, 30}, {382461739, 617283945, 2},

{804459382, 411522630, 3}} :: List

The expression x:K is nothing but the class of the integer x
mod p (if x is a value and T is a type, the value of x:T is the
value of x when regarded as type T, provided the conversion
from the natural type of x to the type T makes sense). Note
that in the output above the quotient (p-1)/ord(x) is small. In
fact, it is easy to find the list of pairs q,p formed with a given
possible quotient and its likelihood to appear. The first few
terms of this list are

{{ 1, 0.26652}, { 2, 0.26652}, { 3, 0.08884},

{ 6, 0.08884}, { 9, 0.04442}, {18, 0.04442},

{ 5, 0.06663}, {10, 0.06663}, {15, 0.02221},

{30, 0.02221}, {45, 0.01111}, {90, 0.01111}}

(the probabilities of the remaining quotients are less than 10-4,
and most of them are much smaller). Thus, 1 or 2 should ap-
pear about 52%, 3 or 6 about 17%, 5 or 10 about 13%, 9 or
18 about 9%, and 15 or 30 about 4%.

In the experiment above we see, for example, that

x=653136751:K

is a primitive element of K. Hence (note that 3607 is a divisor
of p-1)

y=x^((p-1)/3607)

---> 1118708644 :: K

will be an element of order 3607:

ord(y)

---> 3607 :: Z

As already mentioned, prim(K) returns a primitive element
of K:

prim(Zp)

---> 3 :: Z(1234567891)

z=(3:K)^((p-1)/3607)

---> 1058784230 :: K

ord(z)

---> 3607 :: Z

Construction of extensions
The other main function to construct finite fields is ext. If k is
a finite field, f = f(T) Œ k[T] is a monic irreducible polynomial
in the indeterminate T and t is another indeterminate, then

ext(k,t,f)

constructs the field F = k[T]/(f). After the function call, t is
bound to the class of T mod f, so that the elements of F have
the form a0+a1t+º+ar-1tr-1, where r is the degree of f and ai

Œ k. The same result can be obtained by the function call

ext(k,f(t))

In order to make the function ext practical, we need a way

to find irreducible polynomials over k. This is accomplished
by the function polirred. More specifically,

polirred(k,r,T)

yields a monic polynomial of degree r with coefficients in k in
the indeterminate T and which is irreducible over k. For ex-
ample, if k=Zn 17, the following call produces a list of 16
monic irreducible polynomials over k with successive de-
grees in the range 2..17:

{polirred(k,i,T) with i in 2..17}

--->

{T^2+14, T^3+T+3, T^4+14, T^5+T+3, T^6+T+7,

T^7+T+5, T^8+14, T^9+T+3, T^10+T+7,

T^11+3T+7, T^12+T+2, T^13+2T+6, T^14+T+8,

T^15+3T+6, T^16+14, T^17+16T+16} :: List

Therefore, we can construct the field of 1717 elements as
follows:

F=ext(k,t^17-t-1)

---> F(17^17) :: Field

And now we can operate in F. For example:

n=card(F)-1

---> 827240261886336764176 :: Z

r=ord(t)

---> 51702516367896047761 :: Z

n/r

---> 16 :: Z

minpol(t,k,T)

---> T^17+16T+16 :: Z17[T]

minpol(t^700,k,T)

---> T^17+7T^15+16T^14+12T^12+13T^11+7T^10+

3T^9+16T^8+2T^7+4T^6+8T^5+12T^4+12T^3+8T

^2+16 :: Z17[T]

If needed, OMEGA can produce the list of monic irre-
ducible polynomials over a finite field K, of a given degree r.
The function is

listirred(K,r,T)

where T is the indeterminate in which we want to write the
polynomials.

Two more internal functions worth being mentioned are

factor(f,K)

irred(f,K)

The first factors the polynomial f with coefficients in the finite
field K into its irreducible factors, and the second verifies
whether the polynomial f with coefficients in K is irreducible
over K.

Relations
Relations are constructs of the form

{a->x,b->y,...}

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 203

If we assign this object to a variable t, then t(a) returns x,
t(b) returns y, and so on. We see that a,b,... bevave as in-
dices, or keys, and x,y,... as corresponding associated val-
ues.

In the following table, the indices are the numbers n less
than 27000 that are the sum of two cubes, and the corre-
sponding values are pairs (i,j) such that i � j and n = i3+j3:

L={i^3+j^3 -> {i,j} with (i,j) in (1..30)^2

where i<=j}

The result is a table of dimension 465 and so we have
omitted it. Instead, we have selected the elements of the
table that have more than one decomposition:

select(L,(x,y)—> nops(L(x))>1)

---> {1729->({1, 12},{9, 10}),

4104->({2, 16},{9, 15}),

13832->({2, 24},{18,20}),

20683->({10, 27},{19, 24})} :: Table

Thus, 1729 is the first integer that is the sum of two cubes in
two different ways, and we also get the next three integers
with the same property.
Remark. Note that

{1->a,2->b,1->c}

---> {1->(a,c),2->b}

and so the values associated to the same key are accumu-
lated into a sequence of values for that key. On the other
hand, the construction of L could be as follows:

L={i^3+j^3 -> {i,j} with i,j in 1..30,1..30

suchthat i<=j}

In other words, the parenthesis in (i,j) are unnecessary
(with or without parenthesis, we are dealing with a sequence
of two elements), and for a range r, r2 is equivalent to (r,r),
or just r,r.

2. Block error-correcting codes

In this section, we introduce the most basic concepts of the
theory of error-correcting codes, and, where appropriate,
we mention or add the related OMEGA functions.

Hamming distance. Weight
Let T be a finite set and let us consider the set Tn. We can
think of the elements of Tn as words of length n formed with
the symbols of the alphabet T.

Whenever T is a finite field F, instead of words of length n
we will also say vectors of dimension n, inasmuch as Fn is a
vector space of dimension n over F.

If x Œ Tn, the support of x, support(x), is the set of the in-
dices i Œ {1,º,n} such that xi ≠ 0.

We set

weight(x) = Áx˜ = Ásupport(x)˜

(weight, or Hamming norm, of x).

Finally, if x,y Œ Tn, we write

d(x,y) = Áx-yÔ,

that is, the number of indices i such that xi ≠ yi, and we say
that it is the Hamming distance between x and y.

It is easy to write W-functions, which we will call support,
weight and dist, that implement the functions above.

support(x) := {i where x.i != 0 with i in

range(x)}

weight(x) := dim(support(x))

dist(x,y) := weight(x-y)

In the following examples, we use the function rv(n,m)
introduced in section 1.4:

Examples:

x=rv(8,2)

---> [0, 1, 1, 0, 0, 0, 1, 0] :: Vector(Z)

y=rv(8,2)

---> [0, 0, 1, 1, 1, 1, 1, 0] :: Vector(Z)

weight x

---> 3 :: Z

weight y

---> 5 :: Z

dist(x,y)

---> 4 :: Z

The purpose of the theory of error-correcting codes
In the theory of error-correcting block codes, the following
aspects are considered:

• First, we group the symbols (of the alphabet T) of an in-
formation stream into words (or blocks) u of some
length k (thus u Œ Tk).

• Second, each u is coded into a word x Œ Tn, for some n
> k, in a way that the map

a:u � x

• (called coding function) is one-to-one. Let us write C �
Tn to denote the image of a.

• Third, we “transmit’’ x through a “channel’’, possibly
with “noise’’, and at the end we “receive’’ a word y Œ Tn.

• Then, the most important step, the decoding process,
is done by means of a map b (called decoding func-
tion) of a subset D � Tn onto C,

b: y � x¢.

If y œ D, y is considered non-decodable. When D = Tn,
we say that the decoding is complete.

• Finally, we take the element u¢ Œ Tk such that a(u¢) = x¢
as the decoded block.

Here is now the key definition: If t is a positive integer, we
say that b has correcting capability t if y Œ D and x¢ = x
(hence also u¢ = u) whenever d(x,y) � t. In other words, if

204 S. Xambó

not more than t symbols of x have been altered along the
transmission channel, then we have that y is decodable and
that the decoded word x¢ coincides with the transmitted
vector x.

It can be seen, under quite general circumstances (cf.
[17], Theorem 4.2.3, p. 132), that the maximum possible cor-
recting capability of a code of length n is Î(d-1)/2 , where d
is the minimum of the numbers d(x,y) for x,y Œ C, x ≠ y (the
integer d is called the minimum distance of the code).

The integers n and k are the length and the dimension of
the code, respectively. The quotient k/n is called the trans-
mission rate. We say that a code is of type [n,k,d] if its length
is n, its dimension k and its minimum distance d.

The goal of the theory of error-correcting block codes is to
find codes with high transmission rate and high correcting
capability. The two parameters, however, cannot be im-
proved independently. Indeed, if d is the minimum distance
(and so t = Î(d-1)/2 is an upper bound for the correcting ca-
pability), then d+k � n+1 (Singleton bound; see Theorem
4.5.6, p. 174, in [17]).

The repetition code [3,1,3] is a simple example that illus-
trates the notion of effective coding and decoding. Note that
the operator |, which has been used in section 1.2 to join
vectors and matrices, can also be used as the or boolean
operator.

Repetition code Rep3 = [3,1,3]

Encoder

a(u) := [u,u,u] # transmission rate = 1/3,

minimum distance = 3

Decoder by «majority», if majority exists;

corrects one error

b(y) :=

if y.1 == y.2 | y.1 == y.3 then y.1

elif y.2 == y.3 then y.2

else print(«Non-decodable vector»)

end

Let us make a list of the length 3 binary

vectors and the corresponding decoding

values:

{[i,j,k], b([i,j,k]) with (i,j,k) in (0..1)^3}

--->

{[0, 0, 0],0, [0, 0, 1],0, [0, 1, 0],0,

[0, 1, 1],1, [1, 0, 0],0, [1, 0, 1],1,

[1, 1, 0],1, [1, 1, 1],1} :: List

Codes defined by a control matrix
A control matrix of codimension r for F-vectors of length n is
a matrix H Œ Mr

n(F) of rank r.
The syndrome of a vector y Œ Fn is

s = yH Œ Fr.

The vectors whose syndrome is 0 form a subspace C of di-

mension k = n-r of Fn and we say that C is the code defined
by H.

If G Œ Mk
n(F) is a matrix whose rows G1,º,Gk form a linear

basis of C over F, we say that G is a generating matrix of C.
In this case, we can take the injective linear map Fk�Fn such
that

u�x = uG

as a coding function. Since

uG = u1G1+º+ukGk,

it is clear that this map sets up an isomorphism of Fk onto C.
To give a first example of these concepts, we list an W-li-

brary that defines the (binary) Hamming [7,4,3] code and
the corresponding coding and decoding functions (cf. [17],
p. 255).

The binary Hamming code C=[7,4,3]

let K be the field of binary digits

let K=Zn 2

let u be the unit of K

u=1:K

Let R be the matrix whose columns are the

binary vectors of length three and weight

at least 2

R=[[u, 0, 1, 1],

[1, 1, 0, 1],

[0, 1, 1, 1]]

(since one entry is in K, all other entries

are projected to K)

Generator matrix of C: the transpose of

stacking R on top of the identity matrix I_4

G = (R & Id(4))’

The control matrix of C: stack the identity

matrix I_3 on top of the transpose of R

H = Id(3) & R’

Encoder:

hamming_encoder(u) := u*G

(note that u*G = uR’|u)

Decoder

hamming_decoder(y):=

begin local n,r,s,j,e,x

n=dim(H); r=dim(G) # n=7, r=4 (number of

rows of H and G)

s=y*H # syndrome of y

if zero?(s) then

show(«0 errors»)

x=y

elif

j=index(H,s) # position of s in H

show(«Error in position »,j)

Î

Î

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 205

e=eps(j,n) # error vector

x=y-e # correcting the error

end

take(x,-r) # return the last 4

components of x

end;

Example

u=[1,1,0,1]

x=hamming_encoder(u)

---> [0,1,0,1,1,0,1] :: Vector(K)

let us simulate an error in position 4

e=eps(4,7)

---> [0,0,0,1,0,0,0] :: Vector(Z)

y=x+e

---> [0,1,0,0,1,0,1] :: Vector(K)

hamming_decoder(y)

---> Error in position 4

[1,1,0,1] :: Vector(K)

hamming_decoder(x)

---> 0 errors

[1,1,0,1] :: Vector(K)

Let us see briefly why the Hamming decoder works. We
have that s = yH = (x+e)H = eH, since x is a code-word, and
that eH is (in the example) the fourth row of H, so the position
index of s in H indicates the position of the error.

3. Alternant codes

In this section, we will study the class of alternant codes, and
some relevant subclasses, and we will show how to con-
struct them using OMEGA. For the mathematical part of the al-
ternant codes, we will follow very closely [17], §8.3.

The control matrix of an alternant code of length n and or-
der r has the following form:

Here, h1,º,hn and a1,º,an are elements of some finite
field K¢, with hi, ai ≠ 0 for all i and ai ≠ aj for all i ≠ j. We will re-
fer to h = [h1,º,hn] and a = [a1,º,an] as the vector h and the
vector a of the control matrix. Here is an W-function that con-
structs H:

ACM(h,a,r):=

begin local H, # the matrix

f # current vector of H

f=h; H=[f]

for i in 1..(r-1) do

f=prod(f,a); H = H & f

end

H’

end

#

ACM(a,r):= ACM(a,a,r)

The function prod(a,b) of two vectors a and b of the same
length, which returns their component-wise product, can be
defined as follows:

prod(a,b):= [a.i*b.i for i in range(a)]

If K is a subfield of K¢ (possibly K = K¢), then the code
defined by H over K is the subspace of Kn whose elements
are the vectors x such that xH = 0 (vectors with null syn-
drome).

To implement the alternant codes, we need to store the
vectors h and a, and the codimension r. Since on decoding
we will have to calculate syndromes, it is also advisable to
calculate and store H. We will also extensively use the in-
verses of the elements of a, so it is convenient to have pre-
computed the vector b of these inverses. The more conve-
nient way for us to achieve this here is to assign the five
objects h,a,b,H,r to the global variables vh, va, vb, H,
cd, respectively. This way, we will ensure that at decoding
time we will have to carry out operations that involve only the
vector y and precomputed data about the code (without the
precomputations, they would have to be repeated for each
vector y, and so the decoder would be inefficient).

To construct alternant codes

Alternant(h,a,r):=

begin

vh=h; va=a; vb=inv(a); H=ACM(h,a,r); cd=r

end

#

Alternant(a,r):= Alternant(a,a,r)

This listing illustrates the function overloading capacity of
OMEGA, as the call Alternant(a,r) is defined in terms of
the more general call Alternant(h,a,r). So we can use
the same name for a function of 3 or 2 parameters. Using
types the overloading can also be used for the same number
of parameters. For example,

f(x:Rational):=1

f(x):=0

defines a function f that on rational numbers takes the value
1 and otherwise the value 0.

Note that the function ACM can be used to define the Van-
dermonde matrices.

Vandermonde matrix of codimension r on the

vector a

vandermonde(a,r) :=

ACM(constantvector(1,dim(a)),a,r)’

Vandermonde square matrix on the vector a

vandermonde(a):=

ACM(constantvector(1,dim(a)),a,dim(a))’

H

h h
h h

h h

n

n n

r
n n

r

=

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜- -

1

1 1

1 1
1 1

L
L

M M

L

a a

a a

206 S. Xambó

BCH codes
These codes can be treated as special alternant codes. A
BCH code over a finite field K (cf. [17], §8.1) depends on an
element a in a finite field extension K¢/K, a positive integer d,
called the designed distance, and a non-negative integer l,
and it is not difficult to see that it coincides, if n is the order of
a, with the code defined over K by the alternant control ma-
trix of order r = d-1 corresponding to the vectors h =
[1,al,a2lº,a(n-1)l] and a = [1,a,a2,º,an-1]. The BCH codes in
the strict, or narrow, sense are those with l = 1.

To make explicit how to use OMEGA to define BCH codes,
it is convenient to define an auxiliary function series(a,n) that
returns [1,a,º,an]:

series(a,n) := [a^i with i in 0..(n-1)]

Then we can define the BCH code associated to a, d and l
as follows:

BCH codes, general and in the narrow sense

BCH(a,d,l):=

begin local n=ord(a)

Alternant(series(a^l,n),series(a,n),d-1)

end

#

BCH(a,d):= BCH(a,d,1)

RS codes
Next we show how to construct RS codes (cf. [17], §8.2).
They can be seen as a special case of BCH codes in the
strict sense, obtained when K¢ = K, a is a primitive element of
K and d = r+1, r being a positive integer (r < n) called the
codimension of the RS code. Thus, a RS code of codimen-
sion r is associated to a given finite field K and can be de-
fined as follows:

RS code of codim r associated to the field K

RS(K,r) := BCH(prim(K),r+1)

Classical Goppa codes
Another class that is a special case of the alternant codes are
the classical Goppa codes. A classical Goppa code over K is
associated to a vector a of length n with components in the
field K¢ (a finite extension of K) and a univariate polynomial g
of degree r with coefficients in K¢ such that g(ai) ≠ 0 for all i,
and can be defined (see [17], p. 389-395) as the alternant
code with vector h equal to the inverses of the values of g on
the components of a, vector a equal to a, and with order r
equal to the degree of g. So OMEGA can be used as follows:

Classical Goppa codes

Goppa(g,a) :=

Alternant(inv(eval(g,a)),a,deg(g))

4. The BM decoder and its Omega implementation

One of the outstanding features of the alternant codes is that
there are good decoding algorithms for them. Here, we de-
scribe a slightly improved version of the algorithm presented

in [17] (Theorem 8.3.8, p. 403), called the Berlekamp-
Massey algorithm (cf. [23], §1.6, p. 12-15).

As explained in chapter 3, b = [b1,º,bn] is the vector
formed with the inverses of the elements ai, that is, bi = ai

-1.

The BM decoding algorithm
This algorithm takes as input a vector y Œ Kn and it outputs, if
y turns out to be decodable, a code vector x.

1. Find the syndrome s = yH, say s = [s0,º,sr-1].
2. Transform s into a polynomial S in the indeterminate z:

S = s0+s1z+º+sr-1zr-1

(S is called polynomial syndrome).
3. Perform the Euclidean algorithm with r0 = zr and r1 = S.

This means that we find q1,q2,º and r2, r3,º so that qj

and rj+1 are the quotient and the remainder of the
whole division of rj-1 by rj, which means that

rj-1 = qj rj + rj+1,

with the condition that rj+1 has, if non-zero, lower de-
gree than rj. The process stops when we find a j, say j =
k, such that rk has degree � r/2 and rk+1 has degree <
r/2 (in the ordinary Euclidean algorithm, the process
stops when rj+1 = 0). In addition, we also compute poly-
nomials

v0 = 0, v1 = 1, v2, º, vk

such that

vj+1 = vj-1-qjvj

(note that rj+1 = rj-1-qjrj). We set s = vk (this is called the
error locating polynomial) and e = rk (this is called error
resolving polynomial).

4. Make a list L = {m1,º,ms} of the indices j Œ L = {1,º,n}
such that s(bj) = 0. These indices are called error loca-
tions. If s is less than the degree of s, return the error
message “Non-decodable vector’’.

5. If K = Z2, return the result of replacing 0 by 1 and 1 by
0 in y for all the error locations.

6. Otherwise, for each j Œ L, replace the value yj by

where s¢ is the derivative of s.

Theorem. The Berlekamp-Massey algorithm corrects at
least � r/2 � errors.
• Proof. See [17], Theorem 8.3.8, p. 403.

W-implementation
First, we describe two W-functions that are basic engines of
the BM algorithm: a modification of the euclidean algorithm,
as needed in step 3 of the algorithm, and whose purpose is
to solve the so-called key equation, and a search function
that supplies the error positions.

y j

j j

j

+
◊ ()

()
a e b

s b'
,

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 207

Modified Euclidean Algorithm, solver of the

key equation

euclid_bm(r0,r1,t):=

begin

local r, v0,v1,v, q

v0=0; v1=1

while t <= deg(r1) do

q=quo(r0,r1)

r=rem(r0,r1); r0=r1; r1=r

v=v0-q*v1; v0=v1; v1=v

end

{v1,r1}

end

The returned pair contains the polynomials v1 and r1,
which, in the case of the BM algorithm, are the error-locator
polynomial and the error-evaluator polynomial, respectively.

The other basic function lists, given a polynomial f and a
list or vector a = [a1,º,an], the indices j in {1,º,n} such that
aj is a zero of f.

zero_positions(f,a):= {j suchthat

eval(f,a.j)==0 with j in range(a)}

Now we can deal with the BM decoder. We assume that
we have the global variables vh, va and vb, holding vectors
of the same length n, with vb the component-wise inverse of
va, and the global variables H and r, holding the control ma-
trix and the rank of the alternant code (see section 3). In the
definition of H, a base field K and an extension K¢/K will also
be defined, and in the listing below we will only assume that
the base field is held in the variable K. As it can be noted, the
implementation provided by this listing is just a straightfor-
ward translation of the mathematical algorithm.

bm(y):=

begin

local s, # syndrome

S, # polynomial syndrome

key, # solution of the key equation

lp, # error-locating polynomial

(sigma)

ep, # error-evaluating polynomial

(epsilon)

L, # list of error positions

j, # a component of L

E, # error list corresponding to L

e # a component of E

s=y*H

if zero?(s) then return y end

clear z

S=vector2pol(s,z)

key=euclid_bm(z^cd,S,cd//2)

lp=key.1; ep=key.2

L=zero_positions(lp,vb)

if dim(L)<deg(lp) then

return(«Non decodable vector») end

if K==Zn 2 then

show(«Error positions: »,L)

return flip(y,L) end

lp=der(lp); # only the derivative of lp is

needed below

E=null # start with the null sequence

for i in range(L) do

j = L.i

e = va.j * eval(ep,vb.j) /

(vh.j * eval(lp,vb.j))

E=(E,-e)

y.j = y.j + e

end

show(«Error table: »,{L,{E}})

y

end

Remark
We have used the function flip(y,L), whose action is to
replace 0 by 1 and 1 by 0, in the vector y, for the positions in-
dicated in the list L: flip (y,L):=for j in L do y.j=1-
y.j end

5. Examples of BM decoding of RS codes

In this section, we have collected examples of the working of
the BM algorithm, for a few chosen RS codes, that can be
run in OMEGA. The idea is to illustrate the complexity of de-
coding when both the code rate and the correcting capacity
are gradually increased.

We have tried to write functions that are useful not only for
RS codes, but for other codes as well, and to gather them
meaningfully. Because of the lack of space, examples of
other classes of codes have been ruled out, but can be
found elsewhere ([27], [26]).

The RS codes have the property that k+d = n+1 = q,
where k and d are the dimension and the minimum distance,
respectively, and q is the cardinal of the base field K. In oth-
er words, the Singleton inequality is an equality for these
codes, a fact that usually is expressed by saying that the
code is maximum distance separable, or MDS for short. In
fact, k = n-r, because the control matrix has rank r, and it is a
general fact for BCH codes that d � r+1 (the so-called BCH
bound), which, together with the Singleton bound, imply that
d = r+1 = (n-k)+1.

Now suppose we want an RS code with a rate of at least r
that can correct t errors. What is the minimum possible q we
have to take? The answer is easy, as we are assuming that k
� rn and n = q-1, so that q = n+1 = k+d � rq-r+2t+1, or

(1-r)q � 2t+(1-r).

If we set r = (1-r), which we will call the redundancy rate of
the code, then the condition is

q � 1+2t/r.

Let us write an W-function that finds, for given r and t, the
minimum q that satisfies the equality.

208 S. Xambó

To find the least number q which is a prime

power that is greater or equal to a given

positive number x

next_q(x):=

begin local q

q=ceil(x)

while primepower?(q)==false do

q=q+1

end

q

end

#

To find the least number q that is a prime

power which is equal or greater than

1+2t/r, t and r given

next_q(r,t) := next_q(1+2*t/r)

For r in {0.40,0.35,0.30,0.25,0.20} (corresponding, re-
spectively, to the transmission rates {0.60,0.65,0.70,
0.75,0.80}), and for t in {1,2,...,12}, we can compile a table of
the minimum q required:

R=[0.40,0.35,0.30,0.25,0.20]

T=[1..12]

[[next_q(r,t) with t in T] with r in R]

Example: RS[26,16,11]
Suppose we want an RS code with a rate of at least 60% that
corrects at least 5 errors. The table above tells us that the
minimum q is 27. So let us set q = 27, hence n = 26. Since t =
5, the least codimension is r = 10 and so k = 16.

The construction of this code is now very straightforward:

Z3=Zn 3

clear x

f=polirred(Z3,3,x)

K=ext(Z3,f)

n=card(K)-1; r=10

RS(K,r)

Now we would like to run the BM decoder to see whether
it works as expected. However, before we will provide some
tools for creating arbitrary random error patterns and code
vectors.

Random combinations of m elements chosen among n
elements. The following function delivers a random combi-
nation of m distinct elements in {1,2,º,n}:

rd_comb(n,m) :=

begin local c,x

c={null}

while dim(c)<m do

x=random(1,n)

if index(c,x)==0 then c=c|{x} end

end

end

Random lists of elements of K. First let us produce a ran-
dom non-zero element of a finite field K, by composing the
function elem(j,K) that produces the j-th element of K (with
some natural built-in order for the elements of K) and the
function call random(1,q-1), which produces a random in-
teger in the interval [1,q-1]:

rd(K) := elem(random(1,q-1),K)

If we want a list of s non-zero random elements of K, we can
call the function

rd(s,K) := {rd(K) with i in 1..s}

Random error patterns. Given the length of the code, n, a
weight s, 0 � s � n, and the field K, we can produce a ran-
dom error pattern of length n, weight s, with entries in the
field K, with the following function:

rd_err_vec(s,K,n) :=

begin local E, L, e, i

E=rd(s,K); L=rd_comb(n,s)

e=constantvector(0,n)

for i in range(E) do

e=e+(E.i)*eps(L.i,n)

end

end

If we do not specify n, let its default be n = card(K)-1:

rd_err_vec(s,K) := err_vec(s,K,card(K)-1)

Finding code vectors. If a is the primitive element of K with
which we constructed the control matrix H, then h =
[1,a,a2,º,an-1] and a = h, and so the columns of H have the
form [1,ai,a2i,º,a(n-1)i], i = 1, º, r (the Vandermonde matrix of
n rows on the elements a,a2,º,ar). It follows from this, and
the fact that the sum of the series(b,n) is zero if b is an el-
ement of K-{0,1}, that the vectors xj of the form xj =
[1,aj,a2j,º,a(n-1)j] are code vectors for j = 0,º, k-1. Actually
the vectors x0,º,xk-1 are linearly independent (note that the
corresponding matrix is the Vandermonde matrix of k rows
on 1,a,a2,º,an-1) and so form a basis of the code. Here is a
direct construction of this generator matrix:

rs_G(a,n,k) :=

[series(a^j,n) with j in 0..(k-1)]

A final remark is that if we want a random code vector, we
have to produce a random linear combination of the rows of
G. This can be done with the following function:
rd_lin_comb(G) :=

begin k,n, t

k=dim(G); n=dim(G.1)

t=[elem(random(n+1),K) with i in 1..k]

t*G

end

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 209

r\t 1 2 3 4 5 6 7 8 9 10 11 12

0.60 7 11 16 23 27 31 37 41 47 53 59 61
0.65 7 13 19 25 31 37 41 47 53 59 64 71
0.70 8 16 23 29 37 41 49 59 61 71 79 81
0.75 9 17 25 37 41 49 59 67 73 81 89 97
0.80 11 23 31 41 53 61 71 81 97 101 113 121

Decoding trials. To simulate the coding + transmission
(with noise) + decoding situation, we can set up a function
that successively generates a random code vector x, adds
to it a random error-pattern e of a prescribed number of er-
rors, and calls the BM decoder on y = x+e. To better track
the results, we will, before calling BM, print x and a pair con-
sisting of the support of e and the vector of non-zero entries
of e (this pair is the real error pattern). Since BM prints the er-
ror locations and the error list, the operation will be fine if
these coincide with the error-pattern printed before. A final
check is that instead of returning bm(y), we will return x-
bm(y), which should be zero if s is not greater than the error-
correcting capacity r/2. Here is the corresponding W-func-
tion:

rs_decoder_trial(s):=

begin local x, e

x=rd_lin_comb(G,K)

show(«Random code vector:», x)

e=rd_err_vec(s,K)

show(«Error pattern of trial:»,

{support(e),non_zeros(e)})

x-bm(x+e)

end

Now it will be enough to evaluate expressions of the form
rs_decoder_trial(s) for diverse s. Let us list the final file con-
taining the complete example:

RS[26,16,11]. Corrects 5 errors

Z3=Zn 3

clear t

K=ext(Z3,t^3+2*t+1)

n=card(K)-1; r=10

RS(K,r)

G=rs_G(t,n,n-r)

rs_decoder_trial(3)

rs_decoder_trial(5)

rs_decoder_trial(6) # beyond the correcting

capacity

Let us also list the output for a trial with 5 errors:

rs_decoder_trial(5)

---> Random code vector:

[1, t^2+2t, t^2+2t+1, t, 2t^2+t, t^2+t, t^2+t,

t, 2t^2+2t+2, t^2+2t+1, t^2, t+1, t^2+t+2,

2t+2, 2t^2+2t+2, t^2+2t, 0, t, 2t^2+2, 1,

2t^2+2, 2t^2+2t+1, t+1, 2t^2+t, 2t^2+1, 2t+1]

Error pattern of trial:

{{2, 6, 8, 16, 26}, {2t^2+2t, 2t^2+2, t^2+2,

t^2+t+1, t^2+2t+2}}

Error table:

{{2, 6, 8, 16, 26}, {2t^2+2t, 2t^2+2, t^2+2,

t^2+t+1, t^2+2t+2}}

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

:: Vector(Z3)

Example: RS[36,24,13]
Let us work out the implementation of an RS code with rate of
at least 65% and correcting 6 errors or more. The minimum q
is 37. Thus, we set q = 37, hence n = 36. Since t = 6, the
least codimension is r = 12 and so k = 24 (k/n is indeed
greater than 0.65). Now we can proceed as in the previous
example, and it will suffice to list the OMEGA file.

K=Zn 37

n=card(K)-1; r=12

RS(K,r)

t=prim(K)

G=rs_G(t,n,n-r)

rs_decoder_trial(4)

rs_decoder_trial(6)

rs_decoder_trial(7) # beyond correcting

capacity

Example: RS[48,34,15]
For an RS code with a rate not less than 70% and correcting
at least 7 errors, the least possible q is 49. Hence n = 48.
Since t = 7, the least codimension is r = 14 and so k = 34 (k/n
is indeed greater than 0.70). Here is a listing of the corre-
sponding OMEGA file.

Z7=Zn 7

K=ext(Z7,t^2-2*t-2) # t coincides with

prim(K)

n=card(K)-1; r=14

RS(K,r)

G=rs_G(t,n,n-r)

rs_decoder_trial(5)

rs_decoder_trial(7)

rs_decoder_trial(8) # beyond correcting

capacity

Example: RS[80,60,21]
For an RS code with a rate not less than 75%, and correcting
at least 10 errors, the least q is 81, and n = 80. Since t = 10,
the least codimension is r = 20 and so k = 60 (k/n is exactly
0.75). Here is a listing of the corresponding OMEGA file.

Z3=Zn 3

K=ext(Z3,t^4+t+2) # t is primitive; found

with polirred(Z3,4,t)

n=card(K)-1; r=20

RS(K,r)

G=rs_G(t,n,n-r)

rs_decoder_trial(7)

210 S. Xambó

rs_decoder_trial(10)

rs_decoder_trial(11) # beyond correcting

capacity

If, instead of q = 81, we take q = 83, and still r = 20, we get
an RS[82,62,21] that performs very similarly, with a slightly
better rate, but with the faster arithmetic mod 83 than that of
F81.

Example: RS[120,96,25]
The least q for an RS code with a rate not less than 80% and
correcting at least 12 errors is q = 121, hence n = 120. The
least codimension is r = 24 and so k = 96 (k/n is just 0.80).
Here is a listing of the corresponding OMEGA file.

Z11=Zn 11

K=ext(Z11,t^2+4*t+2) # t is primitive

n=card(K)-1; r=24

RS(K,r)

G=rs_G(t,n,n-r)

rs_decoder_trial(9)

rs_decoder_trial(12)

rs_decoder_trial(13) # beyond correcting

capacity

A word on organization
Since running the examples presupposes having loaded the
file defining alternant codes, the file implementing the BM al-
gorithm, and a file of tools, all the examples on RS codes
have been organized in a file that we list next.

File: RS.OM

Needs: Omega-Athens/99

Does: Examples of RS codes and BM decoding

Author: S. Xambó

Date: 17/8/99

Projecte OMEGA / 1999

S.Xambó, D.Marquès, R.Eixarch, M.Castells,

D.Arso, P.Garriga

load «e:/omega/xlib»

traces true # in case we want a step-wise

run

Several examples follow. Uncomment the one

to be run, and read it at the Omega screen

by clicking File/Open and choosing rs.omd.

Alternatively, write the expression read

‘«e:/rs/rs»;’ at the Omega prompt and press

return.

#read «e:/rs/rs[8,4,5]»

#read «e:/rs/rs[12,8,5]»

#read «e:/rs/rs[18,12,7]»

#read «e:/rs/rs[26,16,11]» # rate=0.60, t=5

#read «e:/rs/rs[36,24,13]» # rate=0.65, t=6

#read «e:/rs/rs[48,34,15]» # rate=0.70, t=7

#read «e:/rs/rs[80,60,21]» # rate=0.75, t=10

#read «e:/rs/rs[82,62,21]» # rate=0.75, t=10

#read «e:/rs/rs[120,96,25]» # rate=0.80, t=12

traces false

6. Some auxiliary and complementary packages

In this chapter we are going to look at several W-functions
that yield important services in the theory of finite fields and
error-correcting codes, and which are interesting on their
own from the point of view of computer mathematics.

Some other functions of the tools.om lib
Most of the functions in this library (26 function forms) have
already been mentioned and used in these notes, but a few
that are very important for the theory of codes have not been
considered yet.

The first is a function that yields, given a vector or a list v,
a table whose indices are the different elements of v and
whose associated values are the sequences of positions in
which these elements of v occur.

distribution(v) := {v.i->i with i in

range(v)}

distribution({2,3,2,3,2,3,1,2,1,2,3,3,1,3,2})

---> {1->(7,9,14), 2->(1,3,5,8,10,15),

3->(2,4,6,11,12,16)}

The following function easily finds, given a vector or list v
and an expression e, the list of positions in which e occurs in v.

indices(e,v):= {i where e==v.i with i in

range(v)}

indices(2,{2,3,2,3,2,3,1,2,1,2,3,3,1,3,2});

---> (1,3,5,8,10,15)

It is to be remarked that index(e,v) is an internal function
that returns 0 if e is not present in v and otherwise the first in-
dex i such that e = vi.

To find the values that have maximum frequency in a vec-
tor or list, and the corresponding lists of positions that they
occupy, we can use the following function:

distribution_maximum_frequency(v):=

begin

local d, c, m, k, C

d=distribution(v)

c={domain(d)} # the list of keys of

table d

m=nops(d(c.1)) # number of occurrences

of c.1

calculation of the maximum number of

occurrences

for i in 2..dim(c) do

if (k=nops(d(c.i)))>m then m=k end

end

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 211

Selection of the elements that have

maximum frequency

C=null # the null sequence

for i in range(c) do

if nops(d(c.i))== m then

C=(C,c.i,{d(c.i)}) end

end

C={C}

{C.(2*i-1)->C.(2*i) with i in

1..(dim(C)/2)}

end

distribution_maximum_frequency({2,3,2,3,2,3,1,

2,1,2,3,3,1,3,2})

---> {2->(1,3,5,8,10,15),3->(2,4,6,11,12,16)}

For further useful applications of these functions, in the
decoding of algebro-geometric codes, see [26].

The last group of functions in tools.om that we want to
explain are brack and prima. Let us consider them in turn.
The function brack(a,x) (we use a name to remind the way
in which it is usually denoted in books on error-correcting
codes; see [17], §8.3) yields the list of components of an el-
ement a of the finite extension field K[x] of K in terms of the
basis 1,x,º,xr-1 of K[x] over K (so r is the degree of the ex-
tension K[x]/K). It uses the internal function components(a),
which gives the sequence of these components when a is
not in K.

brack(a,x):=

begin

if subfield?(field(a),precedent_ext

(field(x))) then {a}| constantlist(0,

relativedeg(x))-1)

else {components(a)}

end

end

Let us explain a little more the OMEGA services involved in
this function. In W, a finite field K comes equipped, by its
very construction, with a filtration

Zp = K0 � K1 � º � Kn-1 � Kn = K

such that, for i = 1, º, n, Ki is obtained by a call of the form
ext(Ki-1,fi), where fi is an irreducible polynomial over Ki-1, and
where Zp has been constructed by a call K0=Zn p. Given an
element x of K, field(x) is the subfield Ki such that x Œ Ki

but x œ Ki-1. On the other hand, precedent_ext(K) is the
field Kn-1 and base_ext(K) is the field K0. Finally, sub-
field?(K,F) is an external function that tests whether the
field K is one of the subfields of the filtration of F:

subfield?(K,F):=

begin local q

q=card(K)

if car(K)!=car(F) | q>card(F) then

return false end

while card(F)>q do F=precedent_ext(F)

end

if F==K then true

else false end

end

Now the function prima(h:VEC,x) takes the vector h of
length n over K[x] and makes a vector of length nr over K
with the bracks of the components of h, and the function
prima(H:MAT,x) takes the matrix H of type mxn over K[x]
and makes a matrix of type mrxn over K by successively ap-
plying prima to the rows of H.

prima(H:MAT,x):=

begin local H1, i

H1=null

for h in H do H1=(H1,prima(h,x)) end

[H1]

end

prima(h:VEC,x):=

begin local h1, r, v, i

h1={null}

for a in h do h1=h1|brack(a,x) end

[seq h1]

end

For uses of the function prima, see [17], §8.3. To illustrate,
let us work out with OMEGA the example 8.3.2 there.

load «e:/OMEGA/tools»

Z2=Zn 2

clear x

F=ext(Z2,x^3+x+1)

n=card(F)

f8=[0]|series(x,n-1) # the set of elements

of F

--->

[0, 1, x, x^2, (x+1), (x^2+x), (x^2+x+1),

(x^2+1)] :: Vector(F(2^3))

g=T^2+T+1

h=[eval(g,x) with x in f8]

--->

[1, 1, (x^2+x+1), (x+1), (x^2+x+1), (x^2+1),

(x^2+1), (x+1)] :: Vector(F(2^3))

H= (h & prod(h,f8))’

--->

[1, 0]

[1, 1]

[(x^2+x+1), (x^2+1)]

[(x+1), (x^2+x+1)]

[(x^2+x+1), x]

[(x^2+1), (x+1)]

[(x^2+1), (x^2+x)]

[(x+1), x^2]

:: Matrix(F(2^3))

H1=prima(H,x)

--->

212 S. Xambó

[1, 0, 0, 0, 0, 0]

[1, 0, 0, 1, 0, 0]

[1, 1, 1, 1, 0, 1]

[1, 1, 0, 1, 1, 1]

[1, 1, 1, 0, 1, 0]

[1, 0, 1, 1, 1, 0]

[1, 0, 1, 0, 1, 1]

[1, 1, 0, 0, 0, 1]

:: Matrix(Z2)

rang(H1)

---> 6 :: Z

The volume of Hamming spheres and perfect codes
One remarkable expression in the theory of codes is the vol-
ume of the Hamming sphere of radius r in the space Fq

n.
This is returned by the function vol(n,r,q), and vol(n,r)
when q = 2. We can define them by translating to W the usu-
al formulae:

vol(n,r,q):=

sigma binomial(n,i)*(q-1)^i with i in 0..r

vol(n,r):=

sigma binomial(n,i) with i in 0..r

vol(23,3)

---> 2048

vol(11,2,3)

---> 243

These functions are used in many others. Here is, for ex-
ample, an W-function to test whether the parameters C =
[n,k,d] satisfy the condition for a perfect code:

perfect?(C,q):=

q^(C.1-C.2) == vol(C.1, (C.3-1)//2,q)

perfect?(C):=

2^(C.1-C.2) == vol(C.1, (C.3-1)//2)

perfect?([23,12,7]) # the Golay binary code

---> true

perfect?([11,6,5],3) # the Golay ternary

codes

---> true

More generally, we can introduce the notion of perfection
of a code as the quotient of qkvol(n,t,q), which is the total
volume occupied by the Hamming spheres of radius t cen-
tered at code vectors, by qn (the volume of the total space).
In this way the perfect codes are those whose perfection is
exactly 1, while all others have perfection less than 1 (see
next section).

perfection(C,q):=

vol(C.1,(C.3-1)//2,q) / q^(C.1-C.2)

perfection(C):= perfection(C,2)

perfection([11,6,5],3)

---> 1 :: Z

perfection([32,6,15])

---> 0.067

Bounds on code parameter’s and related functions
There are many bounds other than the Singleton upper
bound k � n+1-d, valid under diverse circumstances (cf.
[19]), for the dimension of a code.

In this section, we collect a number of W-functions for the
computation of several bounds of the function Aq(n,d),
where Aq(n,d) denotes the maximum possible cardinal for q-
ary codes of length n and minimum distance d. For the sig-
nificance of Aq(n,d), and for the mathematical discussion of
several of its known bounds, see [20]). As we will see, the vol
function appears in several of the bounds.

Lower bounds
There are only two lower bounds: the Gilbert bound and the
Gilbert-Varshamov bound, the latter obtained by reasoning
with linear codes. The corresponding W functions, gilbert
and gilbert_varshamov, are just a straightforward transla-
tion of the usual formulae and procedures:

lb_gilbert(n,d,q) := ceil(q^n/vol(n,d-1,q))

lb_gilbert(n,d) := ceil(2^n/vol(n,d-1))

lb_gilbert(10,3)

---> 19

lb_gilbert(11,3)

---> 31

lb_gilbert_varshamov(n,d,q):=

begin local k

k=0

while q^(n-k)>vol(n-1,d-2,q) do k=k+1 end

k-1

end

lb_gilbert_varshamov(n,d):=

lb_gilbert_varshamov(n,d,2)

lb_gilbert_varshamov(10,3)

---> 6

(compare the value 2^6=64 with

lb_gilbert(10,3) ---> 19)

Upper bounds
The sphere upper-bound for the maximum cardinal of q-ary
codes of length n and minimum distance d can be pro-
grammed as follows:

ub_sphere(n,d,q):=

floor(q^n/vol(n,(d-1)//2,q))

ub_sphere(n,d):= floor(2^n/vol(n,(d-1)//2))

ub_sphere(10,3)

---> 93

ub_sphere(11,3)

---> 170

For binary codes, this bound is improved by the Johnson
bound. We introduce the function ub_johnson, with two
calls, the main one with two parameters and the other, in-
volved in the definition of the first, with three parameters (see
[20] for details):

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 213

ub_johnson(n,d):=

begin local e,x,i

if even(d) then n=n-1; d=d-1 end

e=d//2

x=(binomial(n,e+1)-binomial(d,e)*

ub_johnson(n,d,d))/floor(n/(e+1)) + sigma

binomial(n,i) with i in 0..e

floor(2^n/x)

end

ub_johnson(n,d,w):=

begin local k,b

k = floor((d+1)/2); b=1

if k<=w then

for i in (w-k)..0..(-1) do

b = floor(b*(n-i)/(w-i))

end

else 0

end

end

ub_johnson(13,5,5)

---> 23 :: Z

ub_johnson(13,5)

---> 77 :: Z

Now we list the W code for the Griesmer bound (see [20] for
details):

ub_griesmer(n,d,q):=

begin local i

i=0

while n>0 do

n=n-ceil(d/q^i)

i=i+1

end

end

ub_griesmer(n,d):=ub_griesmer(n,d,2)

ub_griesmer(13,5)

---> 6 :: Z

ub_griesmer(14,9,3)

---> 4 :: Z

The W code for next bound, the Elias bound, contains a lo-
cal definition of a function, a point that illustrates a powerful
feature of OMEGA, since it facilitates to break complicated ex-
pressions and procedures into simpler and more meaningful
ones. Again see [20] for details about this bound.

ub_elias(n,d,q):=

begin local t, R, f, M, A

t = 1 - 1/q

R = 0..(floor(t*n))

f(r) := r^2 - 2*t*n*r + t*n*d

M = q^n

for r in R do

if f(r)>0 then

A = floor(t*n*d/f(r) * q^n/vol(n,r,q))

if A<M then M=A end

end

end

M

end

ub_elias(n,d):= ub_elias(n,d,2)

ub_elias(14,6)

---> 162

Error reduction factor of a code
We code blocks of k information symbols into blocks of n
symbols. For a decoder with error-correcting capacity t, let
us denote by err(n,t,p) the probability that more than t er-
rors occur in a block, where p is the probability that a symbol
is altered into another symbol. We can calculate this function
by noting that it is equal to 1 minus the probability that at
most t errors occur. In other words, 1-St

j = 0(n
j)pj(1-p)n-j. Taking

into account the optimization in the calculation of some inter-
mediate expressions, the resulting W-function is as follows:

err(n,t,p) :=

begin

locals b,P,q,Q,S

b=1 # binomial(n,j), for j=0

P=1 # P = p^j, for j=0

q=1-p

Q=q^n # Q=(1-p)^(n-j), for j=0

S=Q # The sum S, for j=0

for j in 1..t do

b=b*(n-j+1)//j

P=P*p

Q=Q/q

S=S+b*P*Q

end

1-S

end

We set p=0.01 by default

err(n,t):=err(n,t,0.01)

Now we would like a function ERF(n,k,t,p) expressing, for
a code of length n, dimension d and error-correcting capac-
ity t, and with p as before, the quotient of the average num-
ber of erroneous symbols that occur using the code by the
that without using the code. The formula for this function is
easy to derive and, in W terms, is as follows:

ERF(n,k,t,p):= k*err(n,t,p)/(n*p)

For a code C = [n,k,d], we have t = Î(d-1)/2 , and we can
overload ERF to get the error-reduction factor for C:

ERF(C,p) := ERF(C.1, C.2, (C.3-1) // 2, p)

ERF(C):=ERF(C,0.01)

ERF([23,12,7])

---> 0.003968 :: Decimal

ERF([23,12,7],0.001)

---> 0.00000455 :: Decimal

Cyclotomic order of an integer q mod n
Often it is required to know the order of an integer q mod n,

Î

214 S. Xambó

provided that gcd(q,n) = 1. Although this is an internal func-
tion (which is based on a variation of the algorithm for the
one-parameter function ord(a) that gives the order of a
non-zero element of a finite field), here is a presentation as
an external W-function that uses fast modular arithmetic:

ord(q,n) :=

begin local d, # ordered list of divisors of

phi(n)

A, # integers mod n

u, # the unit of A

i, # current index of divisor of

phi(n)

r # the current divisor of

phi(n)

if gcd(q,n)>1 then return

show(«The number »,q,« is not invertible

mod », n)

else

d = set(divisors(phieuler(n)))

A = Zn n

q = q:A; u = 1:A

i=1; r=d.i

while q^r != u do

i=i+1; r = d.i

end

end

end

For example, the expression

n = 571725

{ord(q,n) with q in 2..100 where gcd(q,n)==1}

is a list of length 40 that is obtained in 0.7 s.

Cyclotomic classes
In the factorization of Xn–1 over Fq, and assuming gcd(n,q) =
1, the irreducible factors are in one-to-one correspondence
with the q-cyclotomic classes of Zn, where the q-cyclotomic
class of j Œ Zn is {j,jq,jq2,º} (the products computed mod n).
The factor corresponding to the class C is the polynomial fC
= PjŒC(X-wj), where w is a primitive n-th root of unit in a field
containing K.

cyclotomic_class(j,n,q) :=

begin local C, k

if gcd(n,q)>1 then

return show(«Number »,q,« is not prime

to »,n) end

j = j mod n; C = {j}

k = (j*q) mod n

while k != j do

C = C | {k}

k = (k*q) mod n

end

C

end

default: q=2

cyclotomic_class(j,n):=cyclotomic_class(j,n,2)

Writing a function that yields the list of all the q-cyclotomic
classes presents few difficulties:

cyclotomic_classes(n,q):=

begin local J, C, c;

if gcd(n,q)>1 then

return show(«Number »,q,« is not prime

to »,n) end

J={0}; C={0}

for j in 1..(n-1) do

if index(J,j)==0 then

c=cyclotomic_class(j,n,q)

C=(C,c); J=J|c

end

end

{C}

end

cyclotomic_classes(n):= cyclotomic_classes(n,2)

cyclotomic_classes(15)

--->

{{0}, {1,2,4,8}, {3,6,12,9}, {5,10},

{7,14,13,11}} :: List

cyclotomic_classes(15,11)

--->

{{0}, {1,11}, {2,7}, {3}, {4,14}, {5,10}, {6},

{8,13}, {9}, {12}}

Since the class of 0 is {0}, and the corresponding factor is
X-1, we see that X15-1 factors over Z2 into the product of five
irreducible factors, one of degree 1, one of degree 2 and
three of degree 4, while the same polynomial factors, over
Z11, into 5 linear factors and 5 quadratic factors.

One way to construct the primitive n-th root w with OMEGA

is: take r=ord(q,n); find f=polirred(K,r,T); construct
F=ext(K,t,f); take a=prim(F); set w = a(qr-1)/n. We can turn
this into an W-function:

omega(K:Field, n:Integer):=

begin local q, r, f, t, F, a

q = card(K)

r = ord(q,n)

if r>1 then f = polirred(K,r,t)

F = ext(K,f)

else F=K end

a = prim(F)

a^((q^r-1)/n)

end

(To obtain a computation environment in which such a func-
tion definition could be evaluated was in fact one of the main
motivations to start the OMEGA Project.)

The Paley construction
For finite fields K of characteristic not 2, the map X: K* � ±1
defined by X(a) = a(q-1)/2 is a character (the Legendre char-
acter) and X(a) = 1 if and only if a is a square in K*. We can
immediately produce an W-function that gives this character:

legendre(a):= if a==0 then 0

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 215

elif a^((card(field(a))-1)/2)==

1 then 1

else -1 end

One interesting construction that uses X is the so-called
Paley matrix of a finite field K (see next section for an appli-
cation related to codes). If the elements of K are x0,º,xn,
where n = q-1, then the matrix is X(xi-xj). We can instruct
OMEGA to obtain this expression as follows:

paley_matrix(K:Field):=

begin

local q, x, chi

n=card(K)-1

x(j):= elem(j,K)

chi(a):=legendre(a)

[[chi(x(i)-x(j)) with j in 0..n] with i in

0..n]

end

paley_matrix(Zn 5)

--->

[0, 1,-1,-1, 1]

[1, 0, 1,-1,-1]

[-1, 1, 0, 1,-1]

[-1,-1, 1, 0, 1]

[1,-1,-1, 1, 0]

:: Matrix(Z)

Note the use of the local functions x and chi, which al-
lows us to write the final expression of the matrix in a form
that is quite close to the mathematical definition.

Hadamard matrices
If we set H = H1 to denote the matrix , and Hn = Hƒn,
then the function hadamard below calculates the matrix Hn

for any n. It is a nice example of a recursive definition, a fea-
ture that is fully supported by OMEGA. Remark that H1ƒH =

and note the compact expression for this matrix in
the function body.

hadamard(1):=[[1,1],[1,-1]]

hadamard(n:Integer) check n>0 :=

begin local H

H=hadamard(n-1)

(H | H)

&

(H |-H)

end

The matrices H = Hn are Hadamard matrices, because
they only contain 1’s and -1’s and satisfy that HHT = nIn.
Moreover, they are normalized, since the first row and col-
umn only contain 1’s. These matrices are closely related to
useful codes (see [20]).

H=hadamard(3)

--->

[1, 1, 1, 1, 1, 1, 1, 1]

[1, -1, 1, -1, 1, -1, 1, -1]

[1, 1, -1, -1, 1, 1, -1, -1]

[1, -1, -1, 1, 1, -1, -1, 1]

[1, 1, 1, 1, -1, -1, -1, -1]

[1, -1, 1, -1, -1, 1, -1, 1]

[1, 1, -1, -1, -1, -1, 1, 1]

[1, -1, -1, 1, -1, 1, 1, -1]

:: Matrix(Z)

(The evaluation of h*h’ yields, as expected, 8I8.)
There is another construction of a (normalized)

Hadamard matrix of order q+1, for any finite field K of q ele-
ments, provided that q+1 is divisible by 4 (see [20]). It uses
the Paley construction and it can be programmed as follows:

hadamard(K:Field):=

begin local q,u,S

q=card(K)

u=constantvector(1,q)

S=idmatrix(q)+paley_matrix(K)

([1] | u)

&

(u |-S)

end

hadamard(Zn 3)

--->

[1, 1, 1, 1]

[1,-1, 1,-1]

[1,-1,-1, 1]

[1, 1,-1,-1]

It is to be remarked that if S is a matrix of type mxn and u a
vector of dimension m, then u|S yields the matrix of type
mx(n+1) obtained by attaching the column vector u¢ to the
left of S. Likewise, if u is a vector of dimension n, then S|u
yields the matrix of type mx(n+1) obtained by attaching u¢ to
the right of S.

Cyclic codes
If g = g0+g1X+º+grXr is a divisor of Xn-1 over a finite field Fq,
and r = deg(g), then the cyclic code Cg corresponding to g
(see [20]) has dimension k = n-r and the i-th row of a kxn
generating matrix G has the form

[0,º,0,g0,º,gr,0,º,0],

with i-1 leading zeros. Similarly, if h = (Xn-1)/g, and h =
hkXk+º+h1X+h0, then the i-th row of a control matrix H that is
dual to H has the form

[0,º,0,hk,º,h0,0,º,0],

again with i-1 leading zeros.
The next three functions allow us to construct these matrices.

cyclic(g:VEC,n):=

begin local r, k, G

r = dim(g)-1; k = n-r

if k>1 then g=g|constantvector(0,k-1) end

G=g

for i in 1..(k-1) do

H H
H H

 -

Ê
ËÁ

ˆ
¯̃

1 1
1 1

 -

Ê
ËÁ

ˆ
¯̃

216 S. Xambó

g = [0] | take(g,n-1)

G=(G,g)

end

[G]

end

cyclic_G(g:POL,n):= cyclic(pol2vector(g),n)

cyclic_H(h:POL,n):=

cyclic(reverse(pol2vector (h)),n)

These functions do not check whether g is a divisor of
Xn–1, nor care about the base field Fq. The point is that we
will first obtain g, for example by calling factor(Xn–1,K)
(which is, incidentally, an efficient internal function), and so
the field K and the fact that g divides Xn–1 are already built-
in.

The functions above can be used to construct the resul-
tant matrix of two vectors of two univariate polynomials:

resultant_matrix(f:VEC,g:VEC):=

cyclic(f,dim(f)+dim(g)-2)

&

cyclic(g,dim(f)+dim(g)-2)

resultant_matrix(f:POL,g:POL):=

resultant_matrix(pol2vector(f),pol2vector(g))

If we want to use indeterminate coefficients to construct
the corresponding resultant matrix, we need an extension
pol2vector(P,T) of the function pol2vector(P) that de-
livers the coefficients of P as a polynomial in T:

pol2vector(P,T):=

begin local c, C, k

c = subst(P,T,0)

C = [c]

P = diff(P,T)

k = 1

while P != 0 do

c = subst(P,T,0)

if c!=0 then c = c/k! end

C = C | [c]

P = diff(P,T)

k=k+1

end

C

end

Now the question can be solved as follows:

resultant_matrix(f, g, T):=

resultant_matrix(pol2vector(f,T),pol2vector

(g,T))

Note also that the discriminant matrix of a polynomial f,
with respect to T, is now given by

discriminant_matrix(f,T):=

resultant_matrix(f,diff(f,T),T)

Let us illustrate how the above functions work in a short
session (cf. [3], p. 233-4):

f2=T^2+b*T+c

---> T^2+Tb+c :: Z[T,b,c]

D2=discriminant_matrix(f2,T)

--->

[c, b, 1]

[b, 2, 0]

[0, b, 2]

:: Matrix(Z[b, c])

d2=det(D2)

---> -b^2+4c :: Z[b,c]

f3=T^3+a*T+b

---> T^3+Ta+b :: Z[T,a,b]

D3=discriminant_matrix(f3,T)

--->

[b, a, 0, 1, 0]

[0, b, a, 0, 1]

[a, 0, 3, 0, 0]

[0, a, 0, 3, 0]

[0, 0, a, 0, 3]

:: Matrix(Z[a, b])

d3=det(D3)

---> 4a^3+27b^2 :: Z[a,b]

f4=T^4+a*T^2+b*T+c

---> T^4+T^2a+Tb+c :: Z[T,a,b,c]

D4=discriminant_matrix(f4,T)

--->

[c, b, a, 0, 1, 0, 0]

[0, c, b, a, 0, 1, 0]

[0, 0, c, b, a, 0, 1]

[b, 2a, 0, 4, 0, 0, 0]

[0, b, 2a, 0, 4, 0, 0]

[0, 0, b, 2a, 0, 4, 0]

[0, 0, 0, b, 2a, 0, 4]

:: Matrix(Z[a, b, c])

d4=det(D4)

---> 16a^4c-4a^3b^2-128a^2c^2+144ab^2c-

27b^4+256c^3 :: Z[a,b,c]

The Meggitt decoder
Let g Œ K[x] be the generating polynomial of a cyclic code C
of length n over K. We want to implement the Meggitt de-
coder (see [13], Ch. XVII). In this decoder, a received vector
y = [y0,º,yn-1] (note the indexing) is seen as a polynomial
y0+y1x+º+yn-1xn-1 and the syndrome of y is, by definition,
the remainder of the euclidean division of y by g, rem(y,g)
in OMEGA. The vectors with zero syndrome are, again by def-
inition, the vectors of C.

If we want to correct t errors, where t is not greater than
the error-correcting capacity, then the Meggitt decoding
scheme presupposes the computation of a table E with the
syndromes of the error-patterns of the form axn-1+e, where a
Œ K* and e Œ K[x] has degree n-2 (or less) and at most t-1
non-vanishing coefficients.

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 217

For example, the binary Golay code can be defined as the
cyclic code of length n = 23 generated by

g = x11+x9+x7+x6+x5+x+1 Œ Z2[x]

and, since in this case the error-correcting capacity is 3, the
Meggitt table can be defined as follows:

E = [rem(x^(n-1),g)->x^(n-1)]

+

[rem(x^(n-1)+x^i,g)->x^(n-1)+x^i with i in

0..(n-2)]

+

[rem(x^(n-1)+x^i+x^j,g)->x^(n-1)+x^i+x^j

with (i,j) in 0..(n-2),0..(n-2) where

j<i]

Actually the type of this sort of table (with brackets in-
stead of braces) is Divisor. Divisors can be added, and
the result is like joining the tables, but adding the values for
the keys that appear in both addends. The advantage of di-
visors D over tables for our present problem is that D(s) re-
turns 0 if s is not in the domain of D. Thus, for the divisor E
above, E(s) is 0 for all the syndromes s that do not coincide
with the syndrome of x22, or that of x22+xi for i = 0, º, 21, or
that of x22+xi+xj for i,j Œ {0,1,º,21} and i > j. Otherwise E(s)
selects, among those polynomials, the one that has syn-
drome s.

Now we implement the Meggitt decoder as an W-function
meggitt(y,g,n) with parameters y, the polynomial to be
decoded, g, the polynomial generating the code, and n, the
length. The algorithm is as follows:

• Find the syndrome s = s0 of y.
• If s vanishes, y is a code vector and we return y.
• Otherwise compute, for j = 1,2,º,n-1, the syndromes sj

of xjy, and stop for the first j such that e = E(s) ≠ 0.
• At this point we know that the symbol of degree n-1-j in

y is an error and that the error is the leading coefficient
of e. Thus we can correct this error, if c is the leading
coefficient of e, by replacing y by y-cxn-1-j.

• Apply the same procedure to the new y.

meggitt(y,g,n):=

begin local x, s, j

x = var(g) # the variable of g

s = rem(y,g) # the syndrome

if s == 0 then return

show(«Code word: \n»,y) end

j = 0

while E(s) == 0 do

j = j+1

s = rem(x^j*y,g)

end

y = y - lcoef(E(s))*x^(n-1-j)

show(«Error in degree », n-1-j, « is

corrected»)

meggitt(y,g,n)

end

The following example shows how this decoder works for
the binary Golay code:

Z2= Zn 2; u=1:Z2

n=23

clear x

g=x^11+x^9+x^7+x^6+x^5+x+u # generator of

Golay2

Construction of Meggitt table E. We do not

list it again: see the first listing

in the last section

y = x^20+x^15+x^10+x^5+u

meggitt(y,g,n)

--->

Error in degree 14 is corrected

Error in degree 12 is corrected

Error in degree 4 is corrected

Code word:

x^20+x^15+x^14+x^12+x^10+x^5+x^4+1 :: Z2[x]

The ternary Golay code can be defined as the cyclic code
of length 11 generated by

g = x5+x4+2x3+x2+2 Œ Z3[x]

and in this case, since the error-correcting capacity is 2, the
Meggitt table can be defined as follows (with n = 11 and z3 =
Z3-{0}):

E =

[rem(a*x^(n-1),g)->x^(n-1) with a in z3]

+

[rem(a*x^(n-1)+b*x^i,g)->a*x^(n-1)+b*x^i

with (i,a,b) in (0..(n-2),z3,z3)]

Now we can work out examples like the following:

Z3= Zn 3; u=1:Z3

n=11

z3=[u,2]

clear x

g=x^5+x^4+2*x^3+x^2+2*u

Construction of Meggitt table, as explained

above. We do not repeat it here.

y = x^4+x^3+x+u

meggitt(y,g,n)

--->

Error in degree 9 is corrected

Error in degree 5 is corrected

Code word:

x^9+x^5+x^4+x^3+x+1 :: Z3[x]

The factors to construct the Golay codes can be obtained
by the internal function factor(f,K):

factor(x^23-1,Zn 2)

--->

218 S. Xambó

{{x+1,1},{x^5+x^4+2x^3+x^2+2,1}},

{x^5+2x^3+x^2+2x+2,1}}

factor(x^11-1,Zn 3)

--->

{{x+2,1}, {x^11+x^9+x^7+x^6+x^5+x+1,1}},

{x^11+x^10+x^6+x^5+x^4+x^2+1,1}}

Since the Golay codes are perfect, it follows that the
Meggitt decoder is complete for these codes.

MacWilliams identities
A nice example of polynomial manipulation is calculating the
weight enumerator of the dual of a linear code given the
weight enumerator of the code (cf. [17], p. 225). If the weight
enumerator of our code is A, n its length and k its dimension,
then the function macwilliams returns the weight enumera-
tor of the dual code:

macwilliams(A,n,k,q):=

(1+(q-1)*t)^n * subst(A,t,((1-t)/(1+

(q-1)*t)))/q^k

macwilliams(A,n,k):=

(1+t)^n*subst(A,t,(1-t)/(1+t))/2^k

macwilliams(1+t^3,3,1)

---> 1+3t^3

macwilliams(1+(2^3-1)*t^4,7,3)

---> 1+7t^3+7t^4+t^7

The latter, for example, is the weight enumerator of the
Hamming [7,4,3] binary code, obtained from the weight enu-
merator 1+7t4 of its dual code.

Cyclotomic polynomials
Let us present here the computation of the cyclotomic poly-
nomials with OMEGA. The algorithm used to obtain Phi(n,T),
the n-th cyclotomic polynomial over Z, is due to H. Lüneburg
and is taken from [7] (Algorithm 2.6.7, p. 73; see also refer-
ences there).

Phi(n,T) :=

begin local P, # to hold the canonical

factorization of n

s, # the number of prime factors of n

i, # current prime factor index

p, # current prime factor

m, # current product of prime divisors

of n

f # current value of result

P = factor(n); s=dim(P)

p=P.1.1; m=p

f = sigma T^(p-i) with i in 1..p # Phi(p,T)

i=1

while i<s do

i=i+1; p=P.i.1; m=m*p;

f = eval(f,T^p)/f

end

eval(f,T^(n/m))

end

For example, the expression

Phi(4725,T)

--->

T^2160+T^2115+T^2070-T^1935-T^1890-2T^1845-

T^1800-T^1755+T^1620+T^1575+T^1530+T^1485+

T^1440+T^1395-T^1260-T^1170-T^1080-T^990-T^900+

T^765+T^720+T^675+T^630+T^585+T^540-T^405-

T^360-2T^315-T^270-T^225+T^90+T^45+1 :: Z[T]

is evaluated in 0.06 s, and the expression

{Phi(n,T) with n in 1..100 where

not(prime?(n))}

in 0.44 s (75 polynomials).

Primitive irreducible polynomials
Given a monic irreducible polynomial f Œ K[T] of degree r, K
being a finite field, the order of the class t = [T] of T mod f is
often a proper divisor of qr-1 (q = |K|). In other words, t need
not be a primitive element of F = K[T]/(f). The order of t is also
said to be the order of f, and f is said to be primitive if and
only if t is a primitive element of F. The order of f can thus be
calculated by the following function:

ord(p,K):=

begin local x, f, t, F

x=var(p)

f=subst(p,x,t)

F=ext(K,f)

ord(t)

end

We usually need to choose f primitive to start with.
Therefore we need a function that returns, given a field K, a
degree r and an indeterminate T, a monic irreducible primi-
tive polynomial of degree r over K.

primitive_irr_pol(K,r,T):=

begin local f, t, F, x

f=polirred(K,r,t)

F=ext(K,f)

x=prim(F)

minpol(x,K,T)

end

Although we rarely will need it, we could as well want the
list of all the monic irreducible primitive polynomials of a giv-
en degree r over K. This can be done by the internal function
listirred(K,r,T), which gives the list of all the monic irre-
ducible polynomials of degree r over K, and the function
ord(p,K) explained above:

all_primitive_irr_pols(K,r,T):=

{p where ord(p,K)==card(K)^r-1 with p in

listirred(K,r,T)}

These functions are reasonably efficient. For example, to
find one irreducible primitive polynomial of degree i over Z2,
for each i in the range 2..30, it took 18 s, and 341 s to find
the 1800 primitive polynomials of degree 15 over Z2 (the

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 219

number of irreducible polynomials of degree 15 over Z2 is
2182).

The other approach, namely factoring F(qr-1,T) Œ K[T] (its
factors are precisely the monic irreducible primitive polyno-
mials of degree r over K) becomes cumbersome because
the degree of the cyclotomic polynomial becomes immedi-
ately very large when we increase r.

Krawtchouk polynomials
Mathematically, these polynomials are defined by the ex-
pression

(see [20], §1.2). We see that this expression is a polynomial
of degree k in X whose coefficients are themselves polyno-
mials in n and q. For their significance in the theory of error
correcting codes, we refer to [20], especially §5.3.

With OMEGA we can get them as indicated below.

newton(x,j):=

(product (x-i+1) with i in 1..j)/j!

Kr(x,k,n,q):=sigma (-1)^j*newton(x,j)*newton

(n-x,k-j)*(q-1)^(k-j) with j in 0..k

Kr(x,k,n):= sigma (-1)^j*newton(x,j)*newton

(n-x,k-j) with j in 0..k

Kr(X,0,n,q)

---> 1 :: Z

Kr(X,1,n,q)

---> -Xq+nq-n :: Z[X,n,q]

Kr(X,2,n,q)

--->

1/2(X^2q^2 + X(-2nq+2n+q-2)q + n^2q^2-

2n^2q+n^2-nq^2+2nq-n)

:: Q[X,n,q]

Kr(X,3,n,q)

--->

-1/6X^3q^3 + 1/2X^2(nq-n-q+2)q^2 - ...

:: Q[X,n,q]

Let us check the orthogonality relation

(see [20], equation 1.2.6) for n = 10 and q = 2:

n=10

V=[[subst(Kr(x,l,n),x,i) with i in 0..n] with

l in 0..n]

--->

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[10, 8, 6, 4, 2, 0, -2, -4, -6, -8, -10]

[45, 27, 13, 3, -3, -5, -3, 3, 13, 27, 45]

[120, 48, 8, -8, -8, 0, 8, 8, -8,-48, -120]

[210, 42,-14,-14, 2, 10, 2,-14,-14, 42, 210]

[252, 0,-28, 0, 12, 0,-12, 0, 28, 0, -252]

[210,-42,-14, 14, 2,-10, 2, 14,-14,-42, 210]

[120,-48, 8, 8, -8, 0, 8, -8, -8, 48, -120]

[45,-27, 13, -3, -3, 5, -3, -3, 13,-27, 45]

[10, -8, 6, -4, 2, 0, -2, 4, -6, 8, -10]

[1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1]

:: Matrix(Z)

W=[[subst(Kr(x,i,n),x,k) with i in 0..n] with

k in 0..n]

--->

[1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1]

[1, 8, 27, 48, 42, 0, -42, -48,-27, -8, -1]

[1, 6, 13, 8, -14, -28, -14, 8, 13, 6, 1]

[1, 4, 3, -8, -14, 0, 14, 8, -3, -4, -1]

[1, 2, -3, -8, 2, 12, 2, -8, -3, 2, 1]

[1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1]

[1, -2, -3, 8, 2, -12, 2, 8, -3, -2, 1]

[1, -4, 3, 8, -14, 0, 14, -8, -3, 4, -1]

[1, -6, 13, -8, -14, 28, -14, -8, 13, -6, 1]

[1, -8, 27, -48, 42, 0, -42, 48,-27, 8, -1]

[1, -10, 45, -120, 210, -252, 210,-120, 45,-10, 1]

:: Matrix(Z)

V*W’

--->

[1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024]

:: Matrix(Z)

Rational points on plane curves
Let us give some examples of how to obtain the rational
points of an affine plane curve over a finite extension of the
base field.

The first example is about the F8-rational points of the
Klein quartic x3y+y3+x = 0 over Z2.

Z2=Zn 2

f(x,y):=x^3*y+y^3+x

clear x

F8=ext(Z2,x^3+x+1)

n=card(F8)-1

f8 = [0] | [x^i with i in 0..n-1]

X = [[x,y] where f(x,y)==0

with (x,y) en (f8,f8)]

--->

[[0, 0], [1, x], [1, x^2], [1, (x^2+x)],

[x, 1], [x, x^2], [x, (x^2+1)], [x^2, 1],

[x^2, (x^2+x)], [x^2, (x^2+x+1)],

 i

n

l i lk
nKr i Kr k q

=
() () =

0
S d

Kr X k n q

X
j

n X
k j q

j

k j k j
, ; ,() = -() Ê

ËÁ
ˆ
¯̃

-
-

Ê
ËÁ

ˆ
¯̃

-()
=

-

0

1 1S

220 S. Xambó

[(x+1), x^2], [(x+1), (x+1)],

[(x+1), (x^2+x+1)], [(x^2+x), 1],

[(x^2+x), x], [(x^2+x), (x+1)],

[(x^2+x+1), x], [(x^2+x+1),(x2+x+1)],

[(x^2+x+1), (x^2+1)], [(x^2+1), (x+1)],

[(x^2+1), (x^2+x)], [(x^2+1), (x^2+1)]]

:: Matrix(F(2^3))

The second example shows how to find the F64-rational
points of the affine plane curve x9+y8+y = 0, defined over Z2

(for this and other examples, see [18]). The procedure is
very similar to the one followed in the previous example.
However, since there are 512 points (it takes about 7 s to
calculate them), we will not reproduce them here.

g(x,y):= x^9+y^8+y

Z2 = Zn 2

clear t

F64=ext(Z2,t^6+t+1)

q=card(F64)

f64=[0] | [t^i with i in 0..(q-2)]

Y=[[x,y] where g(x,y)==0

with (x,y) in (f64,f64)]

dim(Y)

---> 512 :: Z

Y.100

---> [t^5+t+1,t^5+t^3+1] :: Vector(F(2^6))

Rational functions
Among the fundamental services needed for computational
work in the field of algebro-geometric Goppa codes we have
to mention the capacity to define rational functions on any
number of variables and a procedure for evaluating them at
any point. OMEGA implements these services and so, for ex-
ample, the rational function f = (u2v+uv2+2)/(u15+uv7-7) can
be evaluated at the point [2,3] as follows:

clear u, v

f = (u^2*v+u*v^3+2)/(u^15+u*v^7-7)

P = [2,3]

eval(f,P)

---> 68/37135 :: Q

Thus, we have the tools to construct the matrix of values of
a list or vector of rational functions on a list or vector of ratio-
nal points, an object that is of essential in the field. If f is the
vector of rational functions and P is the vector of points, the
matrix can be obtained with the W-expression

[[eval(f.i,P.j) with j in range(P)] with i in

range(f)]

Let us illustrate this with an example (cf. [15], example of
§5.5). The listing does not contain the output for H (a matrix
of type 18x14 over F16), but otherwise is quite explicit.

Z2=Zn 2 # base field

clear x

F=ext(Z2,x^4+x^3+1) # F16

f16=[0]|[x^i with i in 0..(card(F)-2)]

f(x,y):=x^3*y+y^3+x # Klein quartic

F16-rational points of the curve

P={{a,b} where f(a,b)==0

with (a,b) in (f16,f16)}

P=tail(P)# we discard the origin, a pole for the

functions f below

dim(P)

---> 14 :: Z

clear X, Y

List of 18 rational functions

f = {1,1/X,Y/X^2,1/X^2,Y^2/X^3,Y/X^3,1/X^3,

Y^2/X^4,Y/X^4,1/X^4,Y^2/X^5,Y/X^5,1/X^5,

Y^2/X^6,Y/X^6,1/X^6,Y^2/X^7,Y/X^7}

H=[[eval(f.i,P.j) with j in range(P)]

with i en range(f)]

H.7.11

---> x+1 :: F(2^4)

eval(f.7,P.11)

---> x+1 :: F(2^4)

rang(H)

---> 14 :: Z

Two conerstone functions for intersection theory
First we introduce two auxiliary functions. If c = [c1,º,cn] is
the vector of Chern classes of some bundle, the dual bundle
has Chern classes (-1)ici. Let us define an W-function for pro-
ducing these dual classes:

dual(c):= [(-1)^i*c.i with i in range(c)]

The other auxiliary function is convolution(u,v,k),
where u and v are vectors and k is an integer. It will be clear
that it returns the sum u1vk-1+º+uk-1v1, with the convention
that ui (vj) is taken to be zero if i > dim(u) (j > dim(v)), or if i �
0 (j � 0).

convolution(u,v,k):=

sigma u.i * v.(k-i)

where i<=dim(u) & (k-i)<=dim(v)

with i in 1..(k-1)

The two functions to which this section is devoted are c2p
and p2c, which transform, respectively, the total Chern class
c = [c1,c2,º,cn] into the total Chern character p =
[p1,p2/2!,º,pn/n!] and conversely. We just apply the formu-
lae on p. 56 of [5]. In any case, these functions are corner-
stones of the W-library for intersection theory computations
(see [25]), like the Maple functions expp and logg in the
Schubert package of S. Katz and S. A. Strømme.

c2p(c,r:Integer):=

begin

local p, sk

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 221

p=[c.1]

c=dual(c)

for k in 2..r do

sk = convolution(c,p,k)

sk= -(k*c.k + sk)

p = p | [sk]

end

[p.k/k! with i in range(p)]

end

p2c(p,r):=

begin

local c, sk

p=[k!*p.k with k in range(p)]

c=[-p.1]

for k in 2..r do

sk = convolution(c,p,k)

sk= -(p.k + sk)/k

c = c | [sk]

end

dual(c)

end

c=[c1,c2,c3,c4]

c2p(c,4)

--->

[c1, 1/2(c1^2-2c2), 1/6(c1^3-3c1c2+3c3),

1/24(c1^4-4c1^2c2+4c1c3+2c2^2-4c4]

:: Vector(Q[c1, c2, c3, c4, c5, c6, c7, c8])

p=[x1,x2,x3,x4]

p2c(p,4)

--->

[x1, 1/2(x1^2-2x2), 1/6(x1^3-6x1x2+12x3),

1/24(x1^4-12x1^2x2+48x1x3+12x2^2-144x4]

:: Vector(Q[x1, x2, x3, x4, x5, x6, x7, x8])

Since the relation between the total Chern class c =
[c1,c2,º,cn] and the Chern character p = [p1,p2,º,pn] is that
k!pk is the k-th Newton sum of the roots of the polynomial xn-
c1xn-1+º+(-1)ncn, one application of the functions above is
the calculation of the Newton sums of the roots of a given
polynomial in terms of its coefficients:

newton_sums(f,T,r):=

begin local c, n, p

c=pol2vector(f,T)

n=dim(c)-1

c=take(c,n) # discard the leading coef 1

c=dual(reverse(c))

if r>dim(c) then

c=c|constantvector (0,r-dim(c)) end

p=c2p(c,r)

[k!*p.k with k in range(p)]

end

f=x^4+a*x^2+b*x+c

newton_sums(f,x,10)

--->

[0, -2a, -3b, 2a^2-4c, 5ab, -2a^3+6ac+3b^2,

-7a2b+7bc, 2a^4-8a^2c-8ab^2+4c^2,

9a^3b-18abc-3b^3,

-2a^5+10a^3c+15a^2b^2-10ac^2-10b^2c]

:: Vector(Z[a, b, c])

For an interesting application of these sums to the prob-
lem of finding the number of real roots of a real polynomial,
see [16].

7. Ending remarks

We have seen that OMEGA can evaluate very abstract logic
and mathematical expressions, which are syntactically
close to familiar formulas, like

P = {{a,b} suchthat f(a,b)==0 with (a,b) in F^2}

On the other hand, all the objects in W (including types
and functions) are first class, in the sense that any object
can be passed as a parameter to a function, or returned by
other functions, or assigned to a local variable. Thus W has
high mathematical and algorithmic expressive power (as
shown in the diverse examples presented in these notes),
while at the same time it provides an efficient way to run the
algorithms and to organize them in libraries.

Such features make OMEGA a powerful tool for analyzing
and solving problems. In these notes, this has been illustrated
for the case of error-correcting codes (see also [26]), but it
happens likewise in other areas, as is explained in more detail
in some works in progress (cf. [25]). See also [27].

Our next aims are to improve the user interface, such as high
quality mathematical printing, both for the output and for the in-
put of expressions; to reinforce its analytical and numerical
modules; and to improve the geometric and graphic services.

One final point is about the multilingual capacity of
OMEGA. There are two main aspects of this facility. One is re-
lated to commands of the form

babel «latin»

Such commands can be inserted in W-files, but presuppose
that a file latin.dic is available. Its effect is that we can
use, until another babel command or the end of file is found,
the reserved words whose translation into the default re-
served words is included in latin.dic. The default re-
served words are in English, and can always be used any-
where. For example, with a dictionary like

Latin.dic file

cum -> with

talisut -> suchthat

primus? -> prime?

we could write a file like

Programming in latin

babel «latin»

n=10000

p={k talisut primus?(k) cum k in 1..n}

which would be evaluated as

222 S. Xambó

Programming in English

n=10000

p={k suchthat prime?(k) with k in 1..n}

Note that in is the same in Latin as in English, and so cannot
be included in the latin dictionary. A dictionary can contain
multiple translations of the same default reserved word and
users can write their own dictionaries.

The other aspect is that the user can select in the options
menu a language L, which activates the command babel
«L» at the command line, so that the user can type expres-
sions in language L. Another effect of this selection is that
the output on the screen will be in the language L, both for
the values of the expressions entered from the keyboard or
entered by loading a file.

Acknowledgements

OMEGA is also the name of a group of technological projects
developed, or under development, at the FME of the UPC, un-
der the direction of the author (see [22], [10], [1], [4], [2], [6]).

For the programming of the system, the OMEGA team has
used facilities of MA2, especially its computer lab.

The UPC has also assisted through the “Programa
Innova’’, which has had a very positive effect on the OMEGA

team. Through this programme it has been possible to learn
many important capacities which were far from the academ-
ic makeup of the team members and to give a deeper sense
of purpose to its efforts.

I also thank Leonor for her tact, care and patience, espe-
cially during the preparation of this work.

This work has been partially supported by the DGICYT re-
search grants PB94-1196 and TIC99-0762 002-01.

References

[1] D. Arso, Projecte OMEGA: Cossos finits i polinomis.
FME/UPC, September 1998.

[2] M. Castells, Projecte OMEGA: El mòdul geomètric i gràf-
ic. In preparation.

[3] F. Delgado, C. Fuertes, S. Xambó, Introducción al álge-
bra, vol. 2. Univ. de Valladolid, 1998.

[4] R. Eixarch, Projecte OMEGA: el mòdul d’enters i
racionals. FME/UPC, July 1999.

[5] W. Fulton, Intersection theory (2nd ed.). Ergebnisse 2
(3. Folge), Springer-Verlag, 1998.

[6] P. Garriga, Projecte OMEGA: El mòdul d’àlgebra lineal.
In preparation.

[7] D. Jungnickel, Finite Fields -Structure and Arithmetics.
B.I. Wissenshaftsverlag, 1993.

[8] R. Lidl and H. Niederreiter, Introduction to Finite Fields
and their Applications (revised edition). Cambridge
University Press, 1994.

[9] F. J. MacWilliams and N. J. A. Sloane, The Theory of
Error-correcting Codes. North-Holland Mathematical
Library 6, North-Holland, 1977.

[10] D. Marquès, Projecte OMEGA: MEGA -un prototipus de
manipulador simbòlic. FME/UPC, June 1998.

[11] R. J. McEliece, Finite Fields for Computer Scientists
and Engineers. Kluwer Academic Publishers, 1989
(second printing).

[12] A. J. Menezes (editor), Applications of finite fields.
Kluwer Academic Publishers, 1993.

[13] O. Papini, J. Wolfmann, Algèbre discrète et codes cor-
recteurs. Springer-Verlag, 1995.

[14] A. Poli, Ll. Huguet, Codes correcteurs -théorie et appli-
cations. Masson, 1989.

[15] O. Pretzel, Codes and Algebraic Curves. Oxford Lect.
Ser. in Math. 8, Oxford Science Publications, 1998

[16] T. Recio, La columna de matemática computacional,
La Gaceta de la RSME, vol. 1, no. 1, 105-111.

[17] S. Roman, Coding and Information Theory. GTM 134,
Springer-Verlag, 1992.

[18] M. A. Shokrollahi, H. Wasserman, List Decoding of
Algebraic-Geometric Codes. IEEE Trans. Inf. Theory,
45, no. 2, March 1999, 432-437.

[19] M. A. Tsfasman and S. G. Vl\breveadut, Algebraic-
Geometric Codes. Mathematics and Its Applications
(Soviet series), Kluwer Academic Publishers, 1991.

[20] J. H. van Lint, Introduction to Coding Theory (3rd edi-
tion). GTM 82, Springer-Verlag, 1999.

[21] J. H. van Lint and G. van der Geer, Introduction to
Coding Theory and Algebraic Geometry. DMV Seminar
12, Birhäuser Verlag, 1988.

[22] X. Vindel, Projecte OMEGA: Teoria computacional de
grups. FME/UPC, May 1998.

[23] S. B. Wicker, V. K. Bhargava (eds.), Reed-Solomon
codes and their applications. The Institute of Electrical
and Electronics Engineers, 1994.

[24] S. Xambó, Using Intersection Theory. Aportaciones
Matemáticas (7, nivel avanzado), Sociedad
Matemática Mexicana, 1996.

[25] S. Xambó, WIT: An OMEGA Library for Intersection
Theory. In preparation.

[26] S. Xambó, M. Bras, OMEGA decoders of Goppa codes.
In preparation.

[27] S. Xambó et al., OMEGA/Athens: Users Manual/1999.
[28] S. Xambó, D. Marquès, Mathematical symbolic sys-

tems and functional languages. Proceedings of the “IV
Journées Catalanes de Mathématiques Appliquées»,
11-13 February 1998, Tarragona (C. Garcia, C. Olivé,
M. Sanromà eds.), 175-192.

[29] S. Xambó and J. Mola, OMEGA: Engineering a System
for Effective Computations related to Block Error-
correcting Codes. Proc. III International Congress
of Project Engineering, eds. A. Creus, J. Forès,
F. Tadeusz and J. Aragonès (AEIPRO, 1996), 1518-
1525.

[30] S. Xambó and J. Mola, OMEGA: Problem Solving with
the Interpreter w0. Proc. III International Congress of
Project Engineering, eds. A. Creus, J. Forès, F.
Tadeusz and J. Aragonès (AEIPRO, 1996), 1697-
1704.

Omega: a system for the effective construction, coding and decoding of block error-correcting codes 223

